| HUMBEHV 3ST3 |
| :---: | :---: |
| Measures of Central Tendency \& Variability |
| Week 2 |
| Prof. Patrick Bennett |
| |

1

Describing Data Distributions

- Often we wish to summarize data distributions, rather than simply illustrating them in graphs histograms
- Two basic descriptions of a distribution include its "middle" (central tendency) and "how spread out it is" (variability)

Part 1 - Central Tendency

- Measures of central tendency attempt to identify a "typical" score
- How should we define a "typical" score?
- Common measures:
- mode (most common)
- median (middle score; 50th percentile)
- mean (average)

Does statistical "aggregation" make sense?

The taking of a mean of any sort is a rather radical step in an analysis. In doing this, the statistician is discarding information... the individuality of each observation is lost... The strong temptation is, and has always been, to select one observation thought to be the best rather than corrupt it by averaging with others of suspected lesser value.

Gillebrand (1635) One of the first texts to use the arithmetic mean to summarize data.

Statistical "aggregation" in antiquity

"Ladders were made to match the height of the enemy's wall, which they measured by the layers of bricks... These were counted by many persons at once; and though some might miss the right calculation, most would hit upon it...

Thucydides

The length required for the ladders was thus
obtained..." (p 30) From Thucydides' History of the
Peloponnesian War

Example of Mode - Binocular Rivalry Times

6

Mode - Most Common Score

- The mode is the most common/frequent score
- If 2 adjacent scores occur with equal frequency:
- mode = average of those two scores
- If 2 non-adjacent scores occur with equal frequency:
- distribution is bi-modal
- report both numbers

- If range of number occur with nearly equal frequency:
- mode is ill-defined
- report as: "the mode fell within the range of X to Y "

9

Median = Middle Score

Odd number of scores ($\mathrm{N}=11$)
> scores:
9295103108791111069910010885
> sorted scores:
7985929599100103106108108111
> median(scores):
100
Median Location $=(N+1) / 2=(11+1) / 2=6$

10

Cumulative Frequency Plot \& Percentiles

Cumulative Frequency Plot \& Percentiles

Binocular Rivalry (Young Adults)

13

Cumulative Frequency Plot (Median $=50$ th Percentile)

Binocular Rivalry (Young Adults)

14

Mode vs. Median

Binocular Rivalry (Young Adults)

Mode vs. Median - Jelly Bean Estimates

17

Interlude: Summation Notation

- Suppose you have a set of \underline{n} scores, X :
- $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$
- represent an arbitrary score as X_{i}
- Following notation represents the summation of all n scores:

Sigma $\longrightarrow \sum_{i=1}^{n} X_{i}=\left(X_{1}+X_{2}+X_{3}+\cdots+X_{n}\right)$

Summation (continued)

- Operations to the right of Sigma are performed on individual Y's before summation

$$
\sum X^{2}=\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}+\cdots+X_{n}^{2}\right)
$$

Summation (continued)

- Brackets indicate operations performed after summation

$$
\left(\sum X\right)^{2}=\left(X_{1}+X_{2}+X_{3}+\cdots+X_{n}\right)^{2}
$$

21

Mean

- most commonly used measure of central tendency
- it is the average score:
- (sum of all scores) divided by (number of scores)

$$
\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}=\frac{\left(X_{1}+X_{2}+X_{3}+\cdots+X_{n}\right)}{n}
$$

early illustration of calculating a mean

1.7 Kibel's depicition of the deteemmination of fine laztulu rod. (Kibel 1522)

Why use the mean?

- consider the following game:
- we both inspect/study a set of numbers (i.e, the data)
- on each trial, I randomly pick a number from the set
- you guess the value
- repeat for many trials
- define "error" as difference between guess \& number
- your goal: minimize the total error (summed across trials)
- what is the best strategy?
- Answer: guess the mean on every trial
- the mean minimizes the sum of errors \& sum of squared errors
- mean is "least squares" estimate of a "typical" score

Mean is NOT Robust to Outliers

Replacing score of 108 with 99,999 had no effect on median:

```
> scores:
108
92951031087911110699100 99,999 85
> sorted scores:
798592959910010310610811199,999
> median(scores):
100
```

but has a BIG effect on the mean:
with 108 , mean $=98.7$; with 99,999 , mean $=9179.7$

Trimmed Means

- To make the mean less sensitive to extreme values, we can trim a certain percentage of values off of the tails
- Example: scores $=\{2,2,3,5,6,7,8,8,9,501\}$
- mean = 55.1
- Now trim 10% off tails at both ends of sorted scores:
- trimmed scores $=\{z, 2,3,5,6,7,8,8,9,501\}$
- 10% trimmed mean $=6$
- Amount of trimming varies across applications/situations:
- e.g., 20% trimmed mean removes upper \& lower 20% of scores

sorted data:	10\% trimming			20\% trimming			40\% trimming	
187.40		87.40		1	87.40		187.10	
287.64	2	87.64		z	87.64		$\geq \quad 87.64$	
389.17		89.17		3	89.17		$3-89.17$	
489.56		89.56		4	89.56		4.89 .56	
591.92		91.92			91.92		591.92	
$6 \quad 92.23$		92.23			92.23		$6 \quad 92.23$	
93.74		93.74		7	93.74		$7 \quad 93.74$	
894.42		94.42			94.42		$8-94.42$	
994.83		94.83	10\% trimmed mean	9	94.83	20\% trimmed mean	994.83	40\% trimmed mean
1096.69	10	96.69	98.79		96.69	$\rightarrow 98.24$	1096.69	$\rightarrow 96.46$
11 97.04	11	97.04			97.04		11 97.04	
1297.28	12	97.28			97.28		1297.28	
$13 \quad 99.25$	13	99.25			99.25		$13-99.25$	
$14 \quad 104.31$	14	104.31			104.31		$14 \quad 104.34$	
15107.57		107.57			107.57		$15 \quad 107.57$	
16109.55		109.55			109.55		16109.55	
$17 \quad 110.38$		110.38		17	110.38		$17 \quad 110.38$	
18112.68		112.68		18	112.68		$18 \quad 112.68$	
19113.52		113.52		19	113.52		$19-113.52$	
20115.85	20	115.85		20	115.85		20115.85	

Mode, Median, \& Mean

Mode, Median, \& Mean
Survey of Consumer Finances ($\mathrm{N}=1000$)

29

Mode, Median, Mean - Jelly Bean Estimates

30

Median - Advantages \& Disadvantages

- Advantages
- robust to outliers (extreme scores)
- can be calculated even with flat distributions
- good index of "typical" score in skewed distributions
- Disadvantages
- no mathematical formula for the median
- difficult to use median in mathematical derivations/equations
- in some situations, between-sample variability is greater for median than mean (i.e., median less stable than mean)

Mean - Advantages \& Disadvantages

- Advantages:
- in some situations, between-sample variation is less for sample means than sample modes \& medians
, i.e., means are more stable across samples
- mean is easy to use in statistical formulas
- Disadvantages:
- value may not actually exist in the data
- less robust than median to extreme values
- use trimmed means instead?

Part 1 - Central Tendency (summary)

- Mode, Median, Mean
- methods of calculation
- advantages \& disadvantages
- Summation Notation
- Trimmed Means

